Showing posts with label pressure washing. Show all posts
Showing posts with label pressure washing. Show all posts

Tuesday, March 26, 2013

Waterjetting 7c - higher pressure washing with power

In the last post, on surface cleaning, I showed how the jet from a fan nozzle spread very quickly once the water left the orifice. With this spread the stream got thinner, to the point that, very rapidly the jet broke into droplets. These droplets decelerate very rapidly in the air, and disintegrate into mist which rapidly slows down. That mist has little capacity but to get a surface wet, and thus, within a very short few inches, the jet loses power and the ability to clean.

How can we overcome this? Obviously the jet would work better if it could carry the energy to a greater distance. And the jet that does that (as we know from trips to Disney) is a cylindrical stream. In some parts of the cleaning trade this is known as a zero degree jet, to distinguish it from the fifteen degree or other angular designation of the fan jet nozzles that it is often sold with.

But the problem with a single cylindrical jet is that it has a very narrow point of application. Depending on the standoff from the nozzle to the target this will increase a little as the distance grows, but is still likely to be less than a tenth of an inch. That, by itself, would make cleaning a bridge deck a long and laborious job. But consider that if we spun the jet so that it is tilted out to cover a 15 degree cone, the same angle as the best of the fan jets, the water would travel further. With a good nozzle it is possible to extend the range to 3 ft, rather than the typical 4 inches of a fan jet.


Figure 1. The gain in performance when a fan spray is changed to a rotating cylindrical jet. (initially proposed by Veltrup, these are our numbers).

In both cases the water flows out of the orifice at the same volume and pressure. But with the rotating jet the water is able to carry the energy some 9 times as far. As a result the area covered is 9-times as wide, and the job is carried out faster.

You can also look at it another way. It takes only about 10% of the water and the power to clean the surface with the rotating jet, as opposed to the amount required to clean with the fan jet. This is even though the pump unit and the flow rates are the same in both cases. This is why, when you buy some of the smaller pressure washers, they include a nozzle that has a round orifice and which then oscillates within a holder. Not quite as efficient as a controlled movement, but at least it is a start.

Now, of course, life is never quite as simple as it at first appears. Because the jet is being rotated there is sometimes, if the jet is being spun fast enough, some breakup of the jet because of the speed of rotation. And so, in the above example, too high rotation speed would have a disadvantage. Doug Wright showed this in a paper he presented to the WJTA in 2007.
Figure 2. The effectiveness of a rotating jet, at two speeds and at different distances (Doug Wright 2007 WJTA Conference Houston).

On the other hand because the jet has to make a complete rotation before it comes back to the same point on the coverage width, if the lance is moving too fast relative to that turning speed, then the jet will miss part of the surface that it is supposed to be cleaning.

I can illustrate this with a sort of an example. To make it obvious the rotating jet has enough power to cut into the material that it is being spun, and moved over. If the rotation speed is too slow, relative to the speed that the head is moving over the surface, then the grooves cut into the surface won’t touch one another and small ribs of material are left in the surface. This is not a good thing, either from a cleaning or mining perspective. The material we were cutting in this case was a simulated radioactive waste, that an improved design later went on to extract as a “hot” material in a real world project. These materials tend to be unforgiving if they are not properly cleaned off.


Figure 3. Cutting path into simulant showing the grooves and ribs where the rotation speed is not properly matched to the speed of the head over the surface.

There is another answer, which is becoming more popular for a couple of different reasons. If the pressure of the water is increased, then the jet will remain coherent for a greater distance, at a higher rotation speed. Going to a higher rotation speed, also brings in an additional change in the design of the cleaning head.


Figure 4. Cleaning head concept sectioned to show vacuum capture of the debris through the suction line after the jet has removed the material and washed it into the blue cylinder.

As the pressure increases, so the energy of the water and the debris rebounding from the surface increase. To a point this is good, since once they are away from the surface it is relatively simple, if the cleaning operation is confined within a small space by a covering dome, to attach a vacuum line to the dome, and suck all the water and debris into a recovery line. The surface remains relatively dry, all the water and debris is captured, and the tool can be made small enough, and light enough, that it can be moved either by a man or on the end of a robotically controlled arm. (The arm we designed the head for was over 30-ft long, which means that the forces from the jets had to be quite small).

With the higher pressure also comes the advantage that the amount of water that is required, for example to remove a lead-bearing paint from a surface, is much lower. If the water becomes contaminated by the material being washed off, then not only has the total volume to be collected, which is an expense, but it also must be stored and then properly be disposed of. And that may cost several times the cost of the actual cleaning operation, if the contaminant is particularly nasty. So reducing the volume of the water is particularly useful.

A friend of mine called Andrew Conn came up with the idea, for removing asbestos coatings from buildings, of tailoring the pressure and the flow from the nozzles, so that the amount of water required was just enough that it was absorbed by the asbestos as it was removed. Simplified and reduced the costs of cleanup, where that was a significant part of the overall price.

And speaking of using higher-pressure water, this means that there is no need for the abrasive additive, when cleaning say a ship hull. And that means that there is no need to buy, collect, and dispose of the abrasive during the operation.


Figure 5. Spent cleaning abrasive at a shipyard.

There are other advantages to the use of high pressure water over abrasive when cleaning metal, and I’ll talk about that subject a little next time.

Read more!

Monday, March 18, 2013

Waterjetting 7b - more insight into jet structure

In last week’s post I showed some high-speed photographs of the plain water jets that come from the small diamond and sapphire orifices and that are useful in cutting a wide variety of target materials. Before moving away from the subject of high-speed photography, this post will use results from that technique to talk about why pressure washer nozzles may not work well, and have limited range. From there it will raise the topic of adding abrasive to a waterjet stream.

Most of us, I suspect, by this point in time, have used a pressure washer to do some cleaning, typically around the house or perhaps at a car wash. The jet that comes out of the end of the nozzle is typically a fan-shaped stream that widens as the water moves away from the orifice. This flattening of the jet stream, and the resulting spreading jet is achieved by cutting a groove across the end of the nozzle to intersect either a conic or ball-ended feed channel from the back end of the nozzle.


Figure 1. Schematic of how a fan–generating orifice is often made.

One of the problems with this simple manufacturing process is that the very sharp edge that is produced to give a clean jet leaving the nozzle is very thin at the end. This means that with water that is not that clean (and most folk don’t filter or treat pressure washer water) the edge can wear rapidly. I have noted several designs (and we tested many) where the jet lost its performance within an hour of being installed, particularly with softer metal orifices. And in an earlier post I did show the big difference between the performance of a good fan jet and a bad.

So how do photographs help understand the difference, and explain why you should generally keep a fan jet nozzle within about 4-inches of a surface it you are trying to clean it. That does, however, depend on the cone angle that the jet diverges at, once it leaves the nozzle. We found that a 15-degree angle seemed to work best of the different combinations that we tried. If the jet remained of sufficient power, this would mean that it would clean a swath about half-an inch wide with the nozzle held 2-inches above the surface. At 4-inch standoff it will clean a swath about an inch wide, and at 6 inches, this goes up to over an inch-and-a-half. But that would require that the jet be of good quality, and evenly distributed.


Figure 2. Back-lit flash photograph of a fan jet, at a jet pressure of around 1,000 psi. It is less than 6 inches from the end of the orifice to the rhs of the picture.

In Figure 2, the lack of water on the outer edges of the stream shows that the water is not being evenly distributed over the fan. As the water volume leaves the orifice, the sheet of water begins to spread out into the wider, but thinner, sheet that forms the fan. But as it gets wider it also gets thinner, and, like a balloon, water can only be spread so thin before the sheet begins to break up. As soon as it starts to do so, the surface tension in the water causes it to pull back into roughly circular rings of droplets.


Figure 3. Fan jet breakup from a spreading sheet into rings (or strings) of large droplets that rapidly break down into mist.

These droplets start out as relatively large in size, but they are moving at several hundred feet per second, and as single droplets moving through stationary air the air rapidly breaks them up into smaller droplet sizes, and then into mist, while at the same time slowing the droplets down. The smaller they get the quicker that deceleration occurs. When droplets get below 50 microns in size they become ineffective. (From a study that was done on determining the effect of rain on supersonic aircraft).


Figure 4. Showing the stages of the fan jet breakup from a solid sheet to mist that does little but wet the surface that it strikes.

However, if the nozzle is held just in that short range where the droplets have formed, but have not broken down, then the jet will be more effective than it would have been at any other point along its length. This is because of something that was first discovered when scientists at the Royal Aircraft Establishment-Farnborough and at the Cavendish Lab at Cambridge University were studying what would happen if they flew a Concorde into rain, while it was still going supersonic. (They actually tried this in a heavy rain storm in Asia and found it was a seriously bad idea).

The pressures that can develop under the spherical droplet can exceed twice the water hammer pressure so that the impact pressure on the surface can exceed 20-times the driving pressure supplied by the pump. But the region effected is very small, and the effect diminishes as the surface gets wetter. And the problem, as with all waterjet streams, is that it is very hard to know where that critical half-inch range is. It varies even within the same nozzle design models due to small changes on the edge of the orifice. And as a very rough rule of thumb, a perfect droplet moving at a speed of around 1,000 ft/sec will travel 138 diameters before it is all mist. Most drops aren’t perfect and thus will travel around 30 – 50 diameters and once they turn into mist they will decelerate to having no power in less than quarter-of-an-inch. The implication of this, which we checked with field experiments, is that if you hold a pressure washer nozzle with a fan tip more than 4-6 inches from the target you are largely just wetting the surface, and spending a fair amount of money in creating turbulent air.

This story of jet breakup is a somewhat necessary introduction to two posts that I will be along before long. The first will be to discuss how we can use a different idea for nozzle designs to do a much better job, at greater standoff distances, and I will tie that in with some of the advantages of going to much higher pressure to do the cleaning job.

The other avenue that this discussion opens relates to how we mix abrasive within the mixing chamber of an abrasive nozzle design, and that will come along a little later.

(For those interested in more reading there have been a series of Conferences on Rain Erosion, and then “Erosion by Solid and Liquid Impact” which were held under the aegis of John Field at Cambridge for many years. See, for e.g.. Field, J.E., Lesser, M.B. and Davies, P.N.H., "Theoretical and Experimental Studies of Two-Dimensional Liquid Impact," paper 2, 5th International Conference on Erosion by Liquid and Solid Impact, Cambridge, UK, September, 1979, pp. 2-1 to 2-8. The founding conference was held under the imprimatur of the Royal Society, which devoted a volume to the Proceedings. Phil. Trans. Royal Society, London, Vol. 260A.)

Read more!

Sunday, November 18, 2012

Waterjettting 3c - Pressure Washers

It is sometimes easy, in these days when one can go down to the local hardware store and buy a Pressure Washer that will deliver flow rates of a few gallons a minute (gpm) at pressures up to 5,000 psi, to forget how recently that change came about.

One learns early in the day that the largest volume market for pressurized water systems lies in their use as a domestic/commercial cleaning tool. But even that development has happened within my professional lifetime. It is true that one can go back to the mid-1920’s and find pictures of pressure washers being used for cleaning cars, and not only did Glark Gable pressure-paint his fences, but I have seen an old film of him pressure washing his house in the 1930’s.


Figure 1. Pressure washing a car in 1928 (courtesy FMC and Industrial Cleaning Technology by Harrington).

Yet it was not a common tool. The first automated car wash dates from 1947, while the average unit today will service around 71,000 cars a year, and there are about 22,000 units in the country.

When I first went to the Liquid Waste Haulers show in Nashville (now the Pumper and Cleaner Environmental Expo International) the dominant method for cleaning sewer lines was with a spinning chain or serrated saw blade of the Roto-Rooter type. Over the past two decades this has been supplanted by the growth of an increasing number of pressurized washer systems, than can be sent down domestic and commercial sewer lines to clean out blockages and restore flow. As in a number of other applications the pressure of the jet system can be adjusted so that the water can cut through the obstruction, without doing damage to the enclosing pipe. The technology has even acquired its own term, that of Moleing a line. And, for those interested there are a variety of videos that can now be viewed on Youtube showing some of the techniques. (see for example this video). Unfortunately just because a tool is widely available, and simple to assemble, does not mean that it is immediately obvious how best to use it, nor that it is safe to do so, and I will comment on some sensible precautions to take, when I deal with the use of cleaning systems later in this series.

For now, however, I would like to just discuss the use of pressure washers from the aspect that they are the lower end of the range in which the pressure of the water is artificially raised to some level in order to do constructive work. At this level of pressure it is quite common to hook the base pump up to the water system at the house or plant. Flow rates are relatively low, and can be met from a tap. The pressure of the water in the line is enough to keep water flowing, without problems, into the low-pressure side of the pump, although this can be a problem at higher pressures and flows, as will be discussed in the article on the use of 10,000 psi systems.

The typical pressure washer that is used for domestic cleaning will operate at flow rates of around 2-5 gpm and at pressures up to 5,000 psi. Below 2,000 psi the units are often driven by electric motors, while above that the pumps are driven by small gasoline engines. In both cases the engine will normally rotate at a constant speed. With the typical unit having three pistons, the pump will deliver a relatively constant volume of water into the delivery hose.

There are two ways of controlling the pressure that the pump produces. Because the flow into the high-pressure size of the pump is constant, the pressure is generally controlled by the size of the orifice through which the water must then flow. These nozzle sizes are typically set by the manufacturer, with the customer buying a suite of nozzles that are designed to produce jets of different shape, and occasionally pressure.

An alternative way of controlling pressure is to add a small by-pass circuit to the delivery hose, so that, by opening and closing a valve in that line, the amount of water that flows to the delivery nozzle will be controlled, and with that flow so also will the delivery pressure.

Because the three pistons that typically drive water from the low-pressure side of the pump to the high pressure side are attached at 120 degree increments around the crankshaft, and because the pistons must each compress the water at the beginning of the stroke, and bring it up to delivery pressure before the valve opens, there is a little fluctuation in the pressure that is delivered by the pump.

In a later article I will write about some of the advantages of having a pulsating waterjet delivery system (as well as some of the disadvantages if you do it wrong – I seem to remember a piston being driven through the end of a pump cylinder in less than five-minutes of operation in one of the early trials of one such system). In some applications that pulsation can be an advantage, particularly in cleaning, but in others it can reduce the quality of the final product. With less expensive systems however it is normally not possible to eradicate this pulsation.

The Cleaning Equipment Manufacturer’s Association (CEMA – now the Cleaning Equipment Trade Association funded the Underwriters Laboratory to write a standard for the industry (UL 1776) almost 20-years ago. That standard is now being re-written to conform to international standards that are being developed for this industry. There are also standards for the quality of surfaces after they have been cleaned, but these largely deal with cleaning operations at higher pressures, and so will form a topic for future posts, when discussing cleaning at pressures above 10,000 psi.

Sadly although pressure washers are now found almost everywhere, very few folk fully understand enough about how a waterjet works to make their use most effective. Because most operators use a fan jet to cover the surfaces that they are cleaning, the pressure loss moving away from the nozzle can be very rapid. A simple test I run with most of my student classes is to have them direct the jet at a piece of mildewed concrete. Despite the fact that I have shown them, in class, that a typical cleaning nozzle produces a jet that is only effective for about four inches, most students start by holding the nozzle about a foot from the surface. All it is doing is getting the surface wet, and promising a slow, ineffective cleaning operation.

No matter how efficient the pump, if the water is not delivered effectively through the delivery system and nozzle, then the investment is not being properly utilized. It is a topic I will return to on more than one occasion.

Read more!

Sunday, November 11, 2012

Waterjetting 3b - Pumps, Intensifiers and Cannons

When we say a rock is hard it means something different, in terms of strength, to the meaning when we say that we want an egg hard boiled. Terms have to be, and usually are defined through the way in which they are used. At the same time each trade, industry or profession has certain terms that it adopts for its own with more specialized meanings than those which we, in the general public, are familiar.

Ask someone on the street what level of pressure they consider to be “high” and they might answer with numbers that range from 100 psi to perhaps 2-3,000 psi. And yet, within the industry those pressures are really quite low, relative to those most commonly used in cleaning and cutting. High-pressure systems are now available that will generate streams that run continuously at 100,000 psi, and the highest pressure jet that we generated in the MS&T Laboratories was at around 10 million psi.

Within that very broad range some simple divisions make it easier to group the ranges and applications of the different tools that are now common within different parts of the industry. At the same time, over the period of my professional life, the technology has moved forward a long way. Consider that when I wanted to run at test at 50,000 psi back around 1970 I had to use this particular set of equipment.


Figure 1. MS&T Water Cannon firing 12 gallons of water at 50,000 psi.

The water cannon was made by cutting the end from a 90-mm howitzer, and threading a one-inch nozzle on the end. Smaller orifices could then be attached beyond that to give different flow combinations. The pressure to drive the cannon was generated by putting 2,000 gm. of smokeless powder in a cartridge, and then loading and firing the cannon. We had been given the mount, which rotates around two axes by the then McDonnell Douglas (now Boeing), who had used it to hold and move the Gemini spacecraft while they were being inspected.

The pressure divisions which were debated and agreed by the Waterjet Technology Association back in the mid 1980’s broke the pressure range into three separate segments, which described the industry at the time.

The first range is that of the Pressure Washers. Operating pressures lie at and below 5,000 psi.


Figure 2. A small pressure washer being used to clean a drain. (Mustang Water Jetters)

These are the types of unit which are often found in hardware stores for use in homes, and while I won’t get into this until some later posts on safety, and on medical applications, it should be born in mind that it is possible to do serious injury even at these relatively low pressures. (Folk have been known to use the jets to clean off their shoes after work . . . need I say more – a waterjet cuts through skin at around 2,000 psi, and skin is tougher than the flesh underneath). At pressures below 2,000 psi these are often electrically powered. A gasoline motor is often used to drive the portable units that operate above that pressure range.

High-pressure units are defined as those that operate in the pressure range from 5,000 psi to 35,000 psi. The drive motors are usually either electrical or use a diesel drive, and units of over 250 horsepower are now available. Many of these units are known as positive displacement pumps. That is taken to mean that the pump, being driven by a motor at a constant speed, will put out the same volume of water, regardless of the pressure that it is delivered at (up to the strength of the drive shaft).

To ensure that the pressure does not rise above the normal operating pressure several safety devices are usually built into the flow circuit so that, should a nozzle block, for example, a safety valve would open allowing the flow to escape. Different flow volumes can be produced in larger units by placing a gear box between the pump and the motor. As the motor speed changes, for the same piston size in the pump, so the volume output changes also. However, because the pump can only deliver at a certain power the size of the pistons can also be changed so that, at higher delivery pressures the same motor will produce a lower volume of water. I’ll go into that in a little more detail in a later piece.


Figure 3. Section through a high-pressure pump showing how the crankshaft drives the piston back and forth in the cylinder block, alternately drawing low pressure (LP) water in, and then discharging high pressure (HP) water out.

Normally there are a number of pistons connected at different points around the crankshaft, so that as it rotates the pistons are at different points in their stroke. The evens the load on the crankshaft, and produces a relatively steady flow of water from the outlet. (Which, in itself, is a topic for further discussion).

As the need for higher pressures arose the first pumps in the ultra-high pressure range (that above 35,000 psi) were intensifier pumps. These pumps are designed on the basic principal that the force exerted on a piston is equal to the pressure of the fluid multiplied by the area over which it is applied. Thus with a piston that is designed with two different diameters can produce pressures much higher than those supplied.


Figure 4. The basic elements of an intensifier.

Fluid at a pressure of perhaps 5,000 psi is pumped into chamber C. As it flows in the piston is pushed over to the left, drawing water into chamber B. At the same time the water is chamber D is being pushed out of the outlet channel, but because of the area ratio, the delivery pressure is much higher. If, for example, the ratio of the two areas is 12:1 then the pressure of the water leaving the pump will be at 12 x 5,000 = 60,000 psi.

Over the years the materials that pumps are made from, and the designs of the pumps themselves have changed considerably, so that pressure ranges are no longer as meaningful as they were some 25-years ago when we first set these definitions, but they continue to provide some guidance to the different sorts of equipment, and the range of uses of the tools within those divisions, so I will use these different pressure range definitions in the posts that follow.

Read more!