Wednesday, July 29, 2015

Waterjetting 35d - More video on hydro-excavation

In the evolution of the design of a waterjet/suction tool described in the last post I commented on the ability to balance the jets so that they did not spray material beyond the suction shroud. At the same time the shroud, to be most effective, has to be within a quarter–of-an-inch of the final surface, which means that the jets have to cut clearance for the head as it moves. Bearing in mind that the head will be manipulated around the excavation, this means that clearance has to be maintained on all sides.

video

Figure 1. Pass of a cleaning head over a 2-inch sand layer sitting on a set of concrete blocks that are not confined. The video shows the removal of the sand, without water escape.

I apologize for the quality of the tape, but these were research records that we were making of the experiments, merely to get certain data from them and they were not intended for transmission when made.

The second point I wanted to include was that of the ability to use the same design to cut a trench in harder material, again without the spreading of water beyond the trench. The material is a relatively weak cement.

video

Figure 2. Four passes over a weak cement to show that all the material removed can be aspirated at the time of excavation.

The tapes show how one can cut trenches in either soil or light rock fairly quickly and without making much disturbance outside the slot. Obviously the material removed can be collected in a vacuum truck and poured back into the trench after the trench work is complete.

In a later post I will show how this can also be used as part of a tool we developed to find, expose and then neutralize landmines.

Read more!

Friday, July 24, 2015

Waterjetting 35c - Developing a waste removal shroud - video.

The short videotapes in this segment show the evolution of a combination of a waterjet and a suction line as a way of easily removing soil or sand relatively quickly. It is a subject covered in an earlier post. These video clips show some of the tests that helped us to develop that design.

As mentioned in that earlier post the central tube connects to a vacuum line which removes the loosened debris and water. An earlier series of tests had shown that the suction nozzle had to be within quarter of an inch of the surface for the suction to be most effective. The jets had, therefore, to clear a way for this nozzle by cutting down through the material and pushing it into the mouth of the tube, before the tube arrived.

For the first test a single nozzle (out of the three on the head) was used at relatively low pressure.

video

Figure 1. Clip showing a single jet cleaning through 2-inches of sand.

However if the jet pressure is raised to cut harder material, then the jet has enough power to wash the material under and past the suction tube so that only a small part of the solid is picked up and the path fills back up with the washed sand.

video

Figure 2. A higher-pressure cutting jet does not give the debris time to be sucked out of the tank.

If three jets are used, but with the jets directed so that the paths hit each other within the suction zone this stopping each jet going further for a long enough time that the suction can remove both water and debris. 



video

 Figure 3. A three-jet combination where the jets are held within the shroud, leaving a clean path.

For those unable to see the video the configuration of the jets meant that they met under the shroud as shown.



Figure 4 The jet configuration around the shroud.

When this is combined with a protective (flexible) outer shroud the final result was a tool that removes material without over-spraying into the surrounding sand and destabilizing it. Leaving a clean channel.

video

Figure 5. Larger head design removing a 2-inch thick layer of sand.

In a subsequent post I will include (when I can find it among the 200-odd hours of material) a video of a similar (though smaller) tool cutting a clean channel into a soft cement, and leaving a clean path behind it, as shown in the earlier post. For those interested the parts for these cleaning heads were assembled from plumbing supplies from our local hardware store at a cost, per head of around a hundred dollars or so. (back in 1995 when we ran the tests).

Read more!

Monday, July 20, 2015

Waterjetting 35b - Cutting the Missouri Stonehenge video

video


The video that I posted last time did not fare as well as had been hoped, in making the trip from my computer to the blogger post, and so this week, to see if there are other ways of peeling the apple, I have also posted a copy of the video to Youtube, to see if this works better.

The video is of the making of the Missouri Stonehenge for which, as I have mentioned in a previous post, we used a jet pressure of around 15,000 psi with a flow rate of 10 gpm.

The video makes the point that a high-pressure jet system can, with relatively little support, cut a straight edge down the side of a block, even if there is only a very thin layer of rock to remove. It is normally very difficult to do this with a conventional cutting saw, or similar tool, which requires more material on the free side to stop the blade from being deflected away from the cut line.

If this new posting works as I hope, then I will be posting a number of different videos that have been collected over the years, but on Youtube initially, though I will provide the link as I have above.

Read more!

Wednesday, July 15, 2015

Waterjetting 35a - an overview on video

This post is by way of an introduction to an occasional new feature of the site, where I will videos to different posts to help with understanding. Adding videos is not in my skill set, so this first is just a general overview of some of the ways in which waterjets have evolved over the years. I have tried adding one before, but this is the start of a little more of a concerted effort to use this medium. The overall video runs some 15 min 39 seconds.

 It is a compilation of different tapes made over the years, some of which are now otherwise unavailable. I’m going to let the overall video speak for itself with this first piece, but will then come back in subsequent posts to discuss some of the parts of the video. I hope you find it interesting.

video


As I mentioned I will break this into segments and discuss those in more detail later.

Read more!

Wednesday, July 8, 2015

Waterjetting 34e - Hole completions and core removal

When I began writing about hole cutting and drilling, a month ago, I was intending to talk just about the relative efficiencies of cutting the core into larger pieces, rather than designing a cutting pattern that would completely cover the surface of the excavation, milling and removing the core in fine particles. Other topics intruded, however, and it is only now that I am going to conclude this theme by discussing that particular point.

Earlier posts have discussed how, by inclining two jet paths so that they come into close proximity within the target (or intersect in some cases) a much larger volume can be removed with no increase in input energy to the process. The gain in production comes from working out which are the best angles to set the cutting jets at, relative to the overall work piece.


Figure 1. Intersection of two jets in cutting clay. The cuts were made with the sample lying horizontally – in the actual operation the jets cut up and down vertically and the included wedge would normally fall out.

There is no universal rule for selecting the best angle for this, or for selecting the best relative depth for the intersection. It depends on the material being removed, and on the logistics and relative sizes of the hole being driven, and the components that fit into it. The material responses depend very much on the strength and structure of the material. The paths of both jets will have to intersect to remove materials such as steel, whereas with clays, and many rocks the two paths need only be relatively close at their lower end for the intervening rib to separate.

The problems are not just constrained to the removal of that core. One of the significant problems that exists even when using conventional techniques to drive tunnels and other large holes is that of making sure that the diameter that is being cut remains the same size as the tunnel advances. Because it is easier to break the rock within the tunnel wall, because of the release of the surrounding rock pressure, it requires additional effort to cut out beyond the projected perimeter in order to give enough space for the tunnel. With explosive blasting of the tunnel this means that the perimeter holes are drilled out beyond the projected tunnel line, and in cutting with a waterjet a similar strategy is required.

This problem is not normally that severe, since the size of the nozzles and support equipment are not that much larger than the jet that does the cutting, but, when the jet is cutting at the edge of the excavation the jet will need to be inclined outward by an angle of somewhere around 20 - 25 degrees in order to cut clearance.

An additional problem arises with the need to break the pieces being removed from the solid into small enough fragments so that these can be moved out of the way and into a transport line, so that the cutting head can continue to advance. In the case of the Soil Saw (for which Figure 1 showed one of the earlier test cuts) the nature of the clay was such that, once it was broken from the solid it disintegrated relatively easily and could be moved. Had this not been the case the cutting tool could not have passed without cutting the piece into smaller chunks. And in this regard, once a piece has been broken from the solid and is floating in a suspension within the cut, it becomes much more difficult to cut, since it can be deflected away from the jet before the full force of the jet can cut into it.

Further most materials are not as friable as clay – particularly those that are manufactured , and the pattern of cuts has thus to be designed so that the fragments are positively cut to the right size, to make sure they fit through the various gaps and feeds. For most of our work this meant that the pieces should be smaller than walnuts, and usually of around half-an-inch in size.

Ensuring that these cuts intersect in materials of varying properties will often require that the jets be designed to overcut in more favorable conditions, which wastes considerable energy. The alternative is to use the jets to cut relieving slots into the target, but to ensure that all the material is removed to the required depth on a pass by also including a mechanical component to the cut surface.

A cutting head designed by Rogaland Research shows the type of design required to achieve this, illustrating the angles of the two jets that will cut into the target as the head moves around the hole. In this case the design is to fit into a large diameter drill pipe to create a larger overall hole size.


Figure 2. The cutting head design developed by Rogaland Research (Vestavik, O.M., Abrasive Water-Jet Drilling Experiments, Progress Report, Rogaland Research, Stavanger, Norway, May, 1991.)

In this case the ribs of rock that are isolated by the jet cuts are removed by the action of the mechanical cutters in the second part of the bit.


Figure 3. Location of the jetted slots in the face of the drill-hole using the Rogaland tool. (After Vestavik)

In many cases the combination of a waterjet action to provide a free surface for the material to break to, and to relieve some of the confining stress on the material within the hole can significantly lower the mechanical forces required to break out the material. In such cases it makes much more sense to combine a waterjet action with that of a second removal device (which can be mechanical or thermal in some cases) to obtain a much more efficient combined system than that which would otherwise be the case. Where such systems have been used they have been shown to be more efficient in a number of cases than either of the component systems alone.

Unfortunately combining two systems to achieve optimal performance is not as easy as just merging the two sets of components, since there are additional benefits that come where the combination is further optimized so that the two parts work synergistically together. (One of the factors not included in the Rogaland design). I have written of this in the past, and will again soon.

Read more!

Tuesday, June 30, 2015

Waterjetting 34d - Drilling small holes through steel and concrete

In the earlier posts in this section I have concentrated more on cutting the profiles of a hole, and the different ways in which this can be done efficiently. However there are many cases where the hole has to travel into the work piece to a depth greater than can be easily achieved without the nozzle entering the hole, or where the hole is being drilled into something with no realistic “other side.”

In these cases, choice of the best strategies to remove the central core of material from the hole varies, depending in part on how large the hole is, and in what sort of material. For relatively small diameter holes, then the jet itself can drill a hole large enough for the head to enter the target. (In part this is because the diameter of the nozzle and supporting pipe can either be made quite small, or the jet can be made more diffuse.) In other cases the cutting head has to be designed to remove that central volume in a way that allows the fragments to pass the nozzle assembly as it feeds down the hole.

To illustrate the first approach consider some work that took place at the University of Alabama-Huntsville. The tool that was needed had to drill down through the reinforced concrete of bridge abutments and foundations to give access to tools that would evaluate their condition, and that of the surrounding ground. However putting large holes in such structures is, in itself, a potentially weakening process and can provide a path for subsequent corrosion. The tool developed therefore was reduced in size to around 1/4th inch in diameter, capable of drilling holes of around 3/8th of an inch in size through the reinforced concrete, using a Direct Injection of Abrasion or suspension jet, operated at 5,000 psi.


Figure 1. Portable abrasive suspension injection system. Operates at 5,000 psi (pump is on the left of the platform). This unit fits in the bed of a pickup truck and cost less than $10,000 for the MS&T HPWL lab to build. The device built in Alabama cost roughly $14,000). The tank at the front mixes the abrasive with polymer and water before feeding it into the two supply tanks that alternately supply the feed line to the nozzle. The polymer is used to keep the abrasive in suspension and not to settle back out of the suspension.

The University team coined the name Multi-Intrusive Testing, (MIT) for the method and showed that it was capable of driving holes more than 3-ft deep, and of the required small size. In this case the use of a suspension jet, where the abrasive is added to the high-pressure water upstream of the nozzle assembly means that there is only a single feed line going down-hole. This is one of the features that allows the operational size of the tool to be reduced.

As existing infrastructure (bridges, roads etc) exists through the changes of typical yearly weather cycles the concrete and surrounding materials will slowly deteriorate, and erosion over time can remove the support for a bridge, corrode the internal components and wear away critical parts of the overall assembly. The, fortunately relatively infrequent, collapse of major bridges shows the risks of leaving this damage without repair, yet the very massive nature of many of the structures makes it difficult to detect this damage before it reaches critical size. Hence the need for the tool.

Laboratory tests showed that the rig could drill holes up to 3-ft deep, with the drill, which was rotated at speeds between 60 and 120 rpm, being capable of drilling through not only the concrete, but also the rebar embedded within it.


Figure 2. Hole drilled through reinforced concrete showing the ability to penetrate the steel reinforcing within the concrete. (after Graettinger et al ibid).

Within the geometry of the very small holes of this type, which are required to minimize damage to the structure, it is difficult to offset the nozzle to a sufficient angle that the hole is large enough for the nozzle to pass. In most cases this needs to be at an angle greater than 12 degrees, since shallower angles tend to have the abrasive and jet rebound into the center of the core without fully cutting into the wall to a depth to ensure that the hole diameter is maintained.

One way of overcoming this problem is to force the jet to diverge as it leaves the nozzle, since the induced spreading (typically 15 degrees or more) not only ensures that all the material ahead of the jet is removed, but also allows the wall diameter to be maintained.

The problem with the design, as with many similar drilling applications for waterjet and abrasive waterjet systems, is that the jet cuts to the required diameter at some distance ahead of the nozzle body itself. This can be illustrated with a picture of a diffused waterjet nozzle, that had been used, at MS&T, to drill through a sheet of steel (representing a borehole cased section), a layer of concrete (which would act as the sealing element in wells drilled to recover oil and natural gas for example) and then out into the sandstone rock beyond.


Figure 3. Dispersed abrasive jet (not rotated) used to drill through the simulated borehole wall. Note the two black lines that define the edges of the hole as it cuts into the steel plate.

Although the hole diameter was acceptable for passage of the tool once the steel was penetrated, as with the rebar in the earlier example, the hole diameter through the steel was too small to allow the head to progress. The answer, as has been discussed in earlier posts, is to advance the shroud (the outer cover over the nozzle) forward until it touches the edge of the cutting jet diameter at the required size. At this point, should the jet not initially cut the hole to the required size, then the drill will stop advancing, but the jet will be in contact with the obstructing material – and in a short interval will penetrate through it allowing the jet to drill further forward.

Difffusing the jet and removing the material will work for hole diameters up to about four inches, and we have used such a technique to drill through gravel and similar beds of loose material (with care, since while the jets have little disturbing force on the material around the hole much vibration can cause that material to destabilize and continually collapse into the hole being drilled – which ends up defeating the object of the exercise). I’ll talk about approaches for larger holes next time.

Read more!

Sunday, June 21, 2015

Waterjetting 34c - Holes, pressure and delamination

If you ever go to an Old-Time Miners celebration, you may watch a group of competitors drilling holes through rock by hand with a cold chisel and a hammer. (You can see an example here). In the competition the contestant has 5 minutes to drill either a ¾” or 1-inch diameter hole as deep as possible typically using a 4-lb hammer. The best results will reach around 8-inches deep in that time.

It was the way that miners, and others, have driven holes into rock for millennia, but the skill that gives the highest penetration rate isn’t based on the person with the largest strength and fastest striker arm. No, rather it is the driller that controls the twist of the chisel correctly between successive blows, turning it just enough that the rock between the new strike and the old is chipped off by the impact.

By indexing the drill around the hole (the distance varies a little with rock type) the volume of rock removed by crushing under the chisel impact is magnified several-fold by the chip that is broken off to the side.


Figure 1. Relative volume of rock crushed, and chipped by lateral wedging to the next cut over.

Obviously the chipping makes much better use of the energy than would be the case if the driller just tried to completely crush all the rock using the chisel. However the chisel has to crush some of the rock in order to penetrate below the surface and get a better purchase for the chipping to be effective.

This makes sense in many other cases as well. And in order to make the best use of a cutting or drilling tool you need to understand how it works, how the target material responds – and how these two factors can be combined to give the best performance.

However, the use of a waterjet cutting tool brings a little extra to the table, since as the jet cuts down into the material, it will not, in the first few milliseconds of penetration, put any great lateral pressure on the sides of the hole, but will only focus on removing material in front and to an extent to the immediate side of the jet path.

The change and growth of the lateral pressure in the walls around the hole, and the widening of the bottom of the cut, occurs as it becomes more difficult for the spent water to escape from the cutting region, and the increasing turbulence of the water at the bottom of the cut starts to eat into the walls of the slot.


Figure 2. Widening of a slot at the bottom as the pressure distribution at the bottom of the cut changes. (Cuts were made at different pressures and AFR into granite, at a constant traverse speed) The view is of the end of the block showing the lengths of the cuts made down into the black as the nozzle traversed on the top of the block and towards the camera.

This build up of pressure at the bottom of the cut can become a problem. As the resistance to the water flowing away increases, so the water can penetrate into any larger cracks, or layers in the material, and apply that higher pressure to the plane of weakness. This can, in turn, lead to delamination of the part, or in some rock types it can cause some severe spalling around the impact hole, which may not be the intended result. (Or the sample may split.)

Figure 3. Spalling around an impact point as a jet penetrated into a block of rock.

The way to minimize this build-up is to make sure that the parameters of cutting (the traverse speed and pressure particularly) are chosen so that this does not occur (lower pressure, faster speed). Where this choice of parameters means that the jet won’t cut all the way through the part on a single pass, then it is usually better to plan on making a series of passes along the cutting path, keeping a relatively smooth wall to the cut, and reducing the chances of getting delamination.

This also holds true when cutting glass, although one has also to consider the size of the abrasive in this case since that will control the size of the cracks that are made in the sides of the cut, and the smaller these are, then the higher the pressure required before they will grow.


Figure 4. The effect of particle size on the crack lengths generated on the sides of a cut into glass. (The cuts were made from left to right with particles of SS-70 (0.0117 in diameter); SS-230 (0.0278 in diameter); SS-110 (0.0139 in diameter). (Shotpeener gives size ranges)

As a result in borderline cases it may be helpful to use a finer mesh abrasive to reduce crack size on the interface, where there is a chance of pressure buildup in the bottom of the cut.

Incidentally modern machines allow considerable precision in making multiple cuts – so that repeated passes can be achieved with relatively consistent precision. Perhaps I can illustrate this with a slightly out-of-focus picture of the insert cut from a counter-sunk hole using two passes of a jet in comparison with the pile of chips that resulted from the conventional removal.


Figure 5. Single piece insert removed from a counter-sunk hole cut with a chamfered edge, and removed as a single piece, in contrast with conventional chips.

However there are occasions where the ability to use the down-hole pressure to penetrate and break out the central core of material can be an advantage. One such occurs in mining applications where the rock is held under confinement. Where the jet first cuts a slot around the outside perimeter of the hole, this relieves the ground stress on the material in the core of the hole. That expands a little, opening the cracks in its structure. (In some cases, where the ground stress is high, this stress relief alone is sufficient to either break the core material into disks or to pulverize it into small pieces, but in these cases the ground is often sufficiently close to breaking already that most sensible folk would not be there).

I will return to talk about the break-up of such cores next time.

Read more!