Sunday, December 1, 2013
Waterjetting 15d – More thoughts on cut surface quality.
When a high-pressure stream of water hits a surface, the arrival of subsequent lengths of the waterjet stream forces the initial water away from the initial impact point, into and along any weakness planes in the target material. As a result there is some preferential cutting of the material, especially where there are defined weakness planes in the material. One illustration of this is where a jet that contains cavitation bubbles impacts on a rock surface (figure 1) and as the water enters the narrow eroded channels where preceding lengths of water have preferentially eroded out the weaker rock the pressure in the channel increases, collapsing the remaining cavitation bubbles and further exacerbating the damage within that narrow channel, causing it (them) to grow preferentially relative to the surrounding rock.
Figure 1. Looking down into a channel cut by a cavitating jet that traversed from left to right, at a speed of 0.4 inches/minute. Note the preferential attack into weakness planes within the rock.
As the weakness planes grow and join, so individually larger pieces of rock can be broken free from the target and the path, and pressure profiles of the water in the cutting zone change quite significantly. For this cavitation to have a significant impact on the erosion pattern, however, the traverse speed over the surface must be controlled, and be relatively low. At more effective speeds the cutting process does not allow for the development of this fracture mechanism. Rather, with plain jets, the process concentrates just on crack growth around individual grains. Optimum cutting speeds are much higher, depending on the intended result.
The efficiency of waterjet cutting has, historically, been assessed in terms of how much energy is required to remove unit volume of material. This we call the specific energy of the cutting process, and a common unit is joules/cubic centimeter (j/cc). When using a waterjet to cut into material, in part because of the interference between different segments of the jet stream, pre and post impact, the most efficient cutting speeds are quite high.
Figure 2. The change in cutting efficiency with traverse speed of a high-pressure waterjet cutting stream
The downside to using higher cutting speeds (apart from the simple inertial problems in driving systems at higher speeds in other than straight lines) is that the depths of cut achieved become smaller on individual passes, as the jet has less cutting time on each path increment.
Figure 3. Change in cut depth as a function of traverse speed, for varying different rock types.
In linear cutting systems it is sometimes possible to align secondary or a higher multiple array of nozzles along the cut, so that thicker materials can be cut with a sequence of jet cuts along the same path. Alternately a single nozzle can make multiple passes along the cut path and sequentially deepen the slot.
Unfortunately while this is an effective way of solving some problems, it becomes less efficient as the slot gets deeper.
Figure 4. The change in cutting efficiency with increase in the number of cutting passes.
At higher pass numbers with the target surface at a growing distance from the nozzle, and with the edges of the cut starting to interfere with the free passage of the jet to the bottom of the cut, less energy is arriving at the bottom of the slot and thus the effectiveness falls.
While there are differences between abrasive waterjet cutting (where the optimal cutting speed is much lower than that for a plain high-pressure water jet) the form that the cutting jet takes through the target material is of similar shape in both circumstances.
Figure 5. An abrasive waterjet cut through 1-inch thick glass
As the jet cuts through the piece, so the cutting edge curves backwards from the top of the cut to the bottom. The rate of this curvature is, inter alia, a function of how fast the nozzle is moving over the surface. Dr. Ohlsson showed this effect in cutting through 0.4-inch thick aluminum and mild steel plates, back as part of his doctorate at Lulea in 1995.
Figure 6. Change in the cutting edge profiles and cut groove patterns in metals as a function of cutting speed (L. Ohlssson PhD Lulea, 1995)
The growth of the striations in the cut surface, as the depth of cut increases is one of the larger concerns with cut surface quality, since customers are often concerned that these be minimized, and further if they become large enough they can make it difficult to separate the pieces, particularly if the parts are cut with a complex geometry.
Early in the understanding of the way in which waterjets work, it was thought that the jet would incrementally cut strips from the material in front of the previous cut, inducing steps into the cutting plane that worked their way down the material.
Figure 7. Early concept of cutting front development (L. Ohlssson PhD Lulea, 1995)
However, as higher speed cameras recorded the development of the cutting front, this concept has been rethought. Henning, for example at the 18th ISJCT, used a camera taking 520 frames per second to establish the development of the cut profile as the jet cut through clear plastic. In figure 8 the profiles are shown as they developed at 35 frames/sec to allow them to be distinguished.
Figure 8. Cutting front development as an abrasive jet cuts from right to left (Henning 18th ISJCT)
As Ohlsson had shown this profile develops as the abrasive laden jet impacts then bounces, then impacts and cuts further into the material, as it moves down the cut.
Figure 9. Frames showing a sequence as an abrasive waterjet cuts through 2-inches of glass. ((L. Ohlssson PhD Lulea, 1995)
In his work Henning correlated the change in the “bounce angle” with the jet properties, while Ohlsson also correlated with the traverse speed.
Figure 10. Change in the “bounce” angle as an abrasive jet moves down the cut (Henning 18th ISJCT)
Two things should be remembered in this analysis, since they also explain causes of the increased roughness of the cut each time the jet bounces. The first is that the jet is not only laden with any initial abrasive, but as it cuts into the material, and removes it so that cut material is entrained in the jet, so that there is some abrasive cutting, even with a plain waterjet once the initial cut has been made. The second point is that when the jet bounces it is not constrained to bounce just in the plane of the cut, but can and does take up some deflection into the sides of the cut. Thus, with each bounce and reflection, the cut becomes rougher as that side cutting becomes more pronounced.
However the number of bounces can be slowed by slowing the speed at which the nozzle moves over the surface.
Figure 11. Change in the angle along the cutting edge as the speed of cutting and the jet pressure are changed (H. Louis, Waterjet Conference, Ishinomaki, 1999)
Henning uses a different term, but nevertheless it is clear that increasing the jet pressure and changing the diameter of the jet stream also controls the edge profile, and as discussed, with a smaller number of bounces so the edge quality improves.
Figure 12. The effect of changing jet pressure and jet diameter on the gradient of the cutting edge profile (Henning 18th ISJCT)
Figure 1. Looking down into a channel cut by a cavitating jet that traversed from left to right, at a speed of 0.4 inches/minute. Note the preferential attack into weakness planes within the rock.
As the weakness planes grow and join, so individually larger pieces of rock can be broken free from the target and the path, and pressure profiles of the water in the cutting zone change quite significantly. For this cavitation to have a significant impact on the erosion pattern, however, the traverse speed over the surface must be controlled, and be relatively low. At more effective speeds the cutting process does not allow for the development of this fracture mechanism. Rather, with plain jets, the process concentrates just on crack growth around individual grains. Optimum cutting speeds are much higher, depending on the intended result.
The efficiency of waterjet cutting has, historically, been assessed in terms of how much energy is required to remove unit volume of material. This we call the specific energy of the cutting process, and a common unit is joules/cubic centimeter (j/cc). When using a waterjet to cut into material, in part because of the interference between different segments of the jet stream, pre and post impact, the most efficient cutting speeds are quite high.
Figure 2. The change in cutting efficiency with traverse speed of a high-pressure waterjet cutting stream
The downside to using higher cutting speeds (apart from the simple inertial problems in driving systems at higher speeds in other than straight lines) is that the depths of cut achieved become smaller on individual passes, as the jet has less cutting time on each path increment.
Figure 3. Change in cut depth as a function of traverse speed, for varying different rock types.
In linear cutting systems it is sometimes possible to align secondary or a higher multiple array of nozzles along the cut, so that thicker materials can be cut with a sequence of jet cuts along the same path. Alternately a single nozzle can make multiple passes along the cut path and sequentially deepen the slot.
Unfortunately while this is an effective way of solving some problems, it becomes less efficient as the slot gets deeper.
Figure 4. The change in cutting efficiency with increase in the number of cutting passes.
At higher pass numbers with the target surface at a growing distance from the nozzle, and with the edges of the cut starting to interfere with the free passage of the jet to the bottom of the cut, less energy is arriving at the bottom of the slot and thus the effectiveness falls.
While there are differences between abrasive waterjet cutting (where the optimal cutting speed is much lower than that for a plain high-pressure water jet) the form that the cutting jet takes through the target material is of similar shape in both circumstances.
Figure 5. An abrasive waterjet cut through 1-inch thick glass
As the jet cuts through the piece, so the cutting edge curves backwards from the top of the cut to the bottom. The rate of this curvature is, inter alia, a function of how fast the nozzle is moving over the surface. Dr. Ohlsson showed this effect in cutting through 0.4-inch thick aluminum and mild steel plates, back as part of his doctorate at Lulea in 1995.
Figure 6. Change in the cutting edge profiles and cut groove patterns in metals as a function of cutting speed (L. Ohlssson PhD Lulea, 1995)
The growth of the striations in the cut surface, as the depth of cut increases is one of the larger concerns with cut surface quality, since customers are often concerned that these be minimized, and further if they become large enough they can make it difficult to separate the pieces, particularly if the parts are cut with a complex geometry.
Early in the understanding of the way in which waterjets work, it was thought that the jet would incrementally cut strips from the material in front of the previous cut, inducing steps into the cutting plane that worked their way down the material.
Figure 7. Early concept of cutting front development (L. Ohlssson PhD Lulea, 1995)
However, as higher speed cameras recorded the development of the cutting front, this concept has been rethought. Henning, for example at the 18th ISJCT, used a camera taking 520 frames per second to establish the development of the cut profile as the jet cut through clear plastic. In figure 8 the profiles are shown as they developed at 35 frames/sec to allow them to be distinguished.
Figure 8. Cutting front development as an abrasive jet cuts from right to left (Henning 18th ISJCT)
As Ohlsson had shown this profile develops as the abrasive laden jet impacts then bounces, then impacts and cuts further into the material, as it moves down the cut.
Figure 9. Frames showing a sequence as an abrasive waterjet cuts through 2-inches of glass. ((L. Ohlssson PhD Lulea, 1995)
In his work Henning correlated the change in the “bounce angle” with the jet properties, while Ohlsson also correlated with the traverse speed.
Figure 10. Change in the “bounce” angle as an abrasive jet moves down the cut (Henning 18th ISJCT)
Two things should be remembered in this analysis, since they also explain causes of the increased roughness of the cut each time the jet bounces. The first is that the jet is not only laden with any initial abrasive, but as it cuts into the material, and removes it so that cut material is entrained in the jet, so that there is some abrasive cutting, even with a plain waterjet once the initial cut has been made. The second point is that when the jet bounces it is not constrained to bounce just in the plane of the cut, but can and does take up some deflection into the sides of the cut. Thus, with each bounce and reflection, the cut becomes rougher as that side cutting becomes more pronounced.
However the number of bounces can be slowed by slowing the speed at which the nozzle moves over the surface.
Figure 11. Change in the angle along the cutting edge as the speed of cutting and the jet pressure are changed (H. Louis, Waterjet Conference, Ishinomaki, 1999)
Henning uses a different term, but nevertheless it is clear that increasing the jet pressure and changing the diameter of the jet stream also controls the edge profile, and as discussed, with a smaller number of bounces so the edge quality improves.
Figure 12. The effect of changing jet pressure and jet diameter on the gradient of the cutting edge profile (Henning 18th ISJCT)
Subscribe to:
Post Comments (Atom)
dich vu lam bao cao tai chinh tai my dinh
ReplyDeletedich vu lam bao cao tai chinh tai hai ba trung
dich vu lam bao cao tai chinh tai ba dinh
dich vu lam bao cao tai chinh tai thanh tri
dich vu lam bao cao tai chinh tai hoang mai
dich vu lam bao cao tai chinh tai tay ho
dich vu lam bao cao tai chinh tai dong da
==========
dich vu ke toan thue tai dong da
dich vu ke toan thue tai tay ho
dich vu ke toan thue tai bac ninh
dich vu ke toan thue tai hai ba trung
dich vu ke toan thue tai tu liem
dich vu ke toan thue tai hoang mai
dich vu ke toan thue tai ba dinh
dich vu ke toan thue tai thanh tri
dich vu ke toan thue tai thai binh
cong ty lam dich vu ke toan tai vinh phuc
cong ty dich lam vu ke toan tai hung yen
cong ty dich lam vu ke toan tai phu tho
cong ty lam dich vu ke toan tai hai duong
cong ty lam dich vu ke toan tai hai phong
cong ty lam dich vu ke toan tai bac ninh
dich vu ke toan tai vinh phuc
dich vu ke toan tai hung yen
dich vu ke toan tai hai duong
dich vu ke toan tai tay ho
ReplyDeletedich vu ke toan tai ba đinh
dich vu ke toan tai hoang mai
dich vu ke toan tai thanh tri
dich vu ke toan tai dong da
dich vu ke toan tai tu liem
dich vu ke toan tai ha dong
dich vu ke toan tai long bien
dich vu ke toan tai thanh xuan
dich vu ke toan tai hai phong
dich vu ke toan tai bac ninh
dich vu ke toan tai hai ba trung
dich vu ke toan tai dong anh
dich vu ke toan tai gia lam
dich vu ke toan tai ung hoa
dich vu ke toan tai quoc oai
dich vu ke toan tai son tay
dich vu ke toan tai thanh oai
hoc ke toan tong hop
dich vu ke toan thue tron goi
dich vu bao cao tai chinh
dia chi hoc ke toan tong hop
khoa hoc ke toan tong hop
hoc chung chi ke toan
dich vu ke toan thue tai tphcm
lớp học kế toán tổng hợp
lớp học kế toán thực hành
dia chi hoc ke toan tai cau giay
ReplyDeletedia chi hoc ke toan tai ha dong
dia chi hoc ke toan tai bac ninh
trung tam dao tao ke toan tai ha dong
trung tam dao tao ke toan tai cầu giấy
trung tam dao tao ke toan tai thanh xuan
trung tam dao tao ke toan tai tphcm
khóa học kế toán tổng hợp tại hải phòng
khóa học kế toán tổng hợp tại tại bắc ninh
khóa học kế toán tổng hợp tại tphcm
khóa học kế toán tổng hợp tại hà nội
trung tam dao tao ke toan tai quan 3
trung tam dao tao ke toan tai binh duong
trung tam dao tao ke toan tai bac ninh
trung tam dao tao ke toan tai hai phong
dịch vụ làm báo cáo tài chính tại huyện củ chi
ReplyDeletedịch vụ làm báo cáo tài chính tại quận bình tân
dịch vụ làm báo cáo tài chính tại quân phú nhuận
dịch vụ làm báo cáo tài chính tại quận gò vấp
dịch vụ làm báo cáo tài chính tại quận thủ đức
dịch vụ làm báo cáo tài chính tại quận bình thạnh
dịch vụ làm báo cáo tài chính tại quận tân phú
dịch vụ làm báo cáo tài chính tại quận 12
dịch vụ làm báo cáo tài chính tại quận 11
dịch vụ làm báo cáo tài chính tại quận 10
dịch vụ làm báo cáo tài chính tại quận 9
dịch vụ làm báo cáo tài chính tại quận 8
dịch vụ làm báo cáo tài chính tại quận 7
dịch vụ làm báo cáo tài chính tại quận 6
dịch vụ làm báo cáo tài chính tại quận 5
dịch vụ làm báo cáo tài chính tại quận 4
dịch vụ làm báo cáo tài chính tại quận 3
dịch vụ làm báo cáo tài chính tại quận 2
dịch vụ làm báo cáo tài chính tại quận 1
dịch vụ báo cáo thuế tại tỉnh bình dương
ReplyDeletedịch vụ báo cáo thuế tại quận bình thạnh
dịch vụ báo cáo thuế tại quận tân phú
dịch vụ báo cáo thuế tại quận 5
dịch vụ báo cáo thuế tại quận 3
dịch vụ báo cáo thuế tại tphcm
dịch vụ báo cáo thuế tại quận long biên
dịch vụ báo cáo thuế tại quận hà đông
dịch vụ báo cáo thuế tại quận thanh xuân
dịch vụ báo cáo thuế tại quận cầu giấy
dịch vụ báo cáo thuế tại gia lâm
dịch vụ báo cáo thuế tại đông anh
dịch vụ báo cáo thuế tại thanh trì
dịch vụ báo cáo thuế tại quận hoàng mai
dịch vụ báo cáo thuế tại quận hai bà trưng
dịch vụ báo cáo thuế tại quận từ liêm
dịch vụ báo cáo thuế tại quận hoàn kiếm
dịch vụ báo cáo thuế tại quận tây hồ
dịch vụ báo cáo thuế tại quận ba đình
dịch vụ báo cáo thuế tại quận đống đa
dịch vụ dọn dẹp sổ sách kế toán
ReplyDeletedịch vụ dọn dẹp sổ sách kế toán tại thái bình
dịch vụ dọn dẹp sổ sách kế toán tại phú thọ
dịch vụ dọn dẹp sổ sách kế toán tại hưng yên
dịch vụ dọn dẹp sổ sách kế toán tại quận hải dương
dịch vụ dọn dẹp sổ sách kế toán tại hải phòng
dịch vụ dọn dẹp sổ sách kế toán tại quận thanh trì
dịch vụ dọn dẹp sổ sách kế toán tại quận hoàng mai
dịch vụ dọn dẹp sổ sách kế toán tại quận hai bà trưng
dịch vụ dọn dẹp sổ sách kế toán tại quận hoàn kiếm
dịch vụ dọn dẹp sổ sách kế toán tại quận từ liêm
dịch vụ dọn dẹp sổ sách kế toán tại quận ba đình
dịch vụ dọn dẹp sổ sách kế toán tại quận tây hồ
dịch vụ dọn dẹp sổ sách kế toán tại quận đống đa
dịch vụ dọn dẹp sổ sách kế toán tại bắc ninh
dịch vụ dọn dẹp sổ sách kế toán tại quận tphcm
dịch vụ dọn dẹp sổ sách kế toán tại quận cầu giấy
dịch vụ dọn dẹp sổ sách kế toán tại quận long biên
dịch vụ dọn dẹp sổ sách kế toán tại quận hà đông
dịch vụ dọn dẹp sổ sách kế toán tại quận thanh xuân
dịch vụ hoàn thuế gtgt
dịch vụ làm báo cáo tài chính tại huyện củ chi
ReplyDeletedịch vụ làm báo cáo tài chính tại quận bình tân
dịch vụ làm báo cáo tài chính tại quân phú nhuận
dịch vụ làm báo cáo tài chính tại quận gò vấp
dịch vụ làm báo cáo tài chính tại quận thủ đức
dịch vụ làm báo cáo tài chính tại quận bình thạnh
dịch vụ làm báo cáo tài chính tại quận tân phú
dịch vụ làm báo cáo tài chính tại quận 12
dịch vụ làm báo cáo tài chính tại quận 11
dịch vụ làm báo cáo tài chính tại quận 10
dịch vụ làm báo cáo tài chính tại quận 9
dịch vụ làm báo cáo tài chính tại quận 8
dịch vụ làm báo cáo tài chính tại quận 7
dịch vụ làm báo cáo tài chính tại quận 6
dịch vụ làm báo cáo tài chính tại quận 5
dịch vụ làm báo cáo tài chính tại quận 4
dịch vụ làm báo cáo tài chính tại quận 3
dịch vụ làm báo cáo tài chính tại quận 2
dịch vụ làm báo cáo tài chính tại quận 1
dịch vụ báo cáo thuế tại tỉnh bình dương
ReplyDeletedịch vụ báo cáo thuế tại quận bình thạnh
dịch vụ báo cáo thuế tại quận tân phú
dịch vụ báo cáo thuế tại quận 5
dịch vụ báo cáo thuế tại quận 3
dịch vụ báo cáo thuế tại tphcm
dịch vụ báo cáo thuế tại quận long biên
dịch vụ báo cáo thuế tại quận hà đông
dịch vụ báo cáo thuế tại quận thanh xuân
dịch vụ báo cáo thuế tại quận cầu giấy
dịch vụ báo cáo thuế tại gia lâm
dịch vụ báo cáo thuế tại đông anh
dịch vụ báo cáo thuế tại thanh trì
dịch vụ báo cáo thuế tại quận hoàng mai
dịch vụ báo cáo thuế tại quận hai bà trưng
dịch vụ báo cáo thuế tại quận từ liêm
dịch vụ báo cáo thuế tại quận hoàn kiếm
dịch vụ báo cáo thuế tại quận tây hồ
dịch vụ báo cáo thuế tại quận ba đình
dịch vụ báo cáo thuế tại quận đống đa
Dịch vụ kế toán ACB chuyên cung cấp dich vu ke toan trọn gói uy tín chuyên nghiêp giá rẻ nhất tại HCM và các tỉnh lân cận với chi phí bỏ ra chỉ từ 500.000-1.500.000đ.
ReplyDeleteTri ân khách hàng, ACB giảm giá lên đến 50% giá trị hợp đồng khi doanh nghiệp trở thành đối tác của chúng tôi.
Liên hệ: Dịch vụ kế toán , Dich vu ke toan .
Lầu 4, Tòa nhà Long Mã, 602 Cộng Hòa,P.13,Q.Tân Bình,HCM.
Hotline: (08) 62 97 97 97 - 0966 660 888.
Nice post เกม pc Thx เกมฮิต
ReplyDeleteYou've just mastered that!!! gamerth.hatenablog | blog
ReplyDeleteYou've just mastered that!!! gamerth.hatenablog | blog
ReplyDeleteHi there, just wanted to say, I loved this blog post.
ReplyDeleteIt was practical. Keep on posting!
babyedok.wixsite.com
Hi there, just wanted to say, I loved this blog post.
ReplyDeleteIt was practical. Keep on posting!
babyedok.wixsite.com
شركة نقل عفش بالطائف
ReplyDeleteشركة نقل عفش بينبع
شركة نقل عفش بالدمام
شركة نقل عفش بنجران
شركة نقل عفش بخميس مشيط
شركة نقل اثاث بابها
شركة نقل اثاث بحائل
شركة نقل اثاث ببريدة
شركة نقل عفش بينبع
ReplyDeleteشركة نقل عفش بالدمام
شركة نقل عفش بنجران
شركة نقل عفش بخميس مشيط
شركة نقل اثاث بابها
شركة نقل اثاث بحائل
شركة نقل اثاث ببريدة
شركة نقل اثاث بالقصيم
شركة نقل عفش بالخرج
ReplyDeleteشركة نقل عفش ببريدة
شركة نقل عفش بخميس مشيط
شركة نقل عفش بالقصيم
شركة نقل عفش بتبوك
شركة نقل عفش بابها
شركة نقل عفش بنجران
สล็อตออนไลน์รวมเกมสล็อตไว้เยอะที่สุดของทุกค่าย
ReplyDeleteรวมค่ายดัง เยอะที่สุดให้ท่านเลือกเล่น
สล็อต666
สล็อตออนไลน์ดีที่สุดในเอเชีย ฝาก-ถอนไม่มีขั้นต่ำ
ReplyDeleteแอดมินบริการเร็ว ทันใจ พร้อมบริการ 24 ชั่วโมง
สล็อต168
สล็อตxo
ReplyDeleteโปร่งใส มั่นคง เว็บตรง พร้อมบริการ ล้านเปอร์เซ็นต์
ฝาก-ถอน ด้วยระบบAUTO เริ่มต้นที่1บาท ก็เล่นได้
สล็อต ฟรีเครดิต ไม่ต้องฝาก ไม่ต้องแชร์
ReplyDeleteSUPERSLOT98 เป็นเว็บที่มาแรงที่สุดในเอเชีย เป็นเว็บตรงไม่ผ่านเอเย่น เล่นง่าย ได้เงินจริง ไม่มีล็อคยูสเซอร์ 100%
สล็อต ฟรีเครดิต ไม่ต้องฝาก ต้องแชร์ ถอนได้ 2020
ReplyDeleteเกมสล็อตเว็บใหญ่แตกง่าย รวมสุดยอดค่ายเกมไว้หลากหลาย อาทิเช่น PG SLOT, AMB POKER, ASKMEBET, ICONIC, JILI, KA GAMING, SPADE GAMING, NETENT, YGGDRAZIL GAMING เป็นต้น รวมถึงมีภาพสวย เอฟเฟกต์
สล็อตทดลองเล่น
ReplyDeleteด้วยกฎกติกา รูปแบบการเล่นเกมสล็อตออนไลน์นั้นเล่นง่าย สามารถเล่นได้ทุกเพศ ทุกวัย เหมาะสำหรับผู้ใช้ทั้งรายเก่าและรายใหม่ สามารถพกพาความสนุกติดตามไปได้ทุกที่ ไม่ว่าจะอยู่ที่ไหน ผู้เล่นก็สามารถเพลิดเพลินและสนุกสนานไปกับเกมสล็อตได้ เหมาะที่จะหารายได้แถมยังมีโอกาศได้ลุ้นรับรางวัลและโบนัสมากมายอีกด้วย