Tuesday, December 10, 2013
Waterjetting 16b - Optimum Abrasive Feed Rate and Depth
The post that I wrote last week was focused on the misperception that you need to add more abrasive to an abrasive waterjet if you wish to cut through thicker material. This is wrong on a number of counts, but most particularly because a good operator will have tuned the nozzle to achieve the best cutting jet, based on pressure and abrasive feed rate (AFR) regardless of target material. What the operator may change is the operating pressure (which would change the optimum AFR) and the traverse speed since these control the depth and quality of the cut that the jet makes.
But, before leaving the topic, I would like to discuss, in a little more detail, the concept of the optimal amount of abrasive that one should use with a given jet, and what happens as that feed rate is changed. As I mentioned last time, because of differences in the shapes of the mixing chambers of the nozzles supplied by different manufacturers, the specific sizes and optimal flow rates will differ from nozzle to nozzle but the overall conclusions remain the same.
Last time I pointed out that the driving waterjet had to break up within the mixing chamber in order to properly mix with the abrasive and to bring this up to a maximum speed before the mix left the focusing tube. Where the driving jet is too large then this breakup is not complete and the mixing is not efficient. As a result the jet that comes out of the end is more diffuse and the abrasive will not have reached the full velocity possible. However, if the incoming waterjet is made smaller for the same AFR and other mixing chamber geometries, then the cutting performance will decline.
Figure 1. Effect of increase in jet pressure when cutting aluminum with an AFR of 1.7 lb/minute (after Hashish, M., "Abrasive Jets," Section 4, in Fluid Jet Technology- Fundamentals and Applications, Waterjet Technology Association, St. Louis, MO, 1991.)
For a similar reason adding a polymer to the jet fluid should only be carried out with some care for the consequences. Long-chain polymers can give a jet increased cohesion and this can, at high enough concentrations, inhibit jet breakup in the mixing chamber thus reducing the effectiveness of mixing in the chamber.
Figure 2. The effect of changing cutting fluid on AWJ performance (after Dr Hashish ibid)
Polyox, (polyethylene oxide) is an extremely effective polymer for increasing jet performance by cohering the jet and reducing the friction losses between the pump and the nozzle. However, as the graph shows, adding it to some abrasive systems will reduce performance since the more coherent jet makes it more difficult for the abrasive to mix and accelerate to full velocity. At lower concentrations the polymer allows the jet to breakup, but keeps the slugs of water together making energy transfer more efficient. Higher velocity abrasive means that less is required to achieve the same cutting performance as Walters and Saunders showed.
Figure 3. Effect of adding polymer in reducing the amount of abrasive required to cut stainless steel (after Walters, C.L., Saunders, D.H., "DIAJET Cutting for Nuclear Decommissioning," Paper J2, 10th International Symposium on Jet Cutting Technology, Amsterdam, Netherlands, October, 1990, pp. 427 - 440.)
At low levels of abrasive feed Dr Hashish has shown that increasing the amount of abrasive in the feed increases cutting performance.
Figure 4. Effect of increase in AFR on depth of cut in mild steel at a feed rate of 6 inches/min (After Dr. Hashish ibid), waterjet diameter 0.01 inches.
However, as the abrasive flow rate continues to increase the cutting performance reaches a plateau and can decline, as Dr. Hashish illustrated. An AFR of 20 gm/sec is equivalent to a feed of 2.6 lb/minute.
Figure 5. The effect of higher AFR on cutting depth at 3 jet pressures on a mild steel target (after Dr. Hashish ibid)
Note that in this case the nozzle geometry was not optimized for operation at the highest jet pressure. More visibly we ran a series of cuts across a granite sample, where the only thing that changed between cuts was that we increased the abrasive feed rate in cuts from the left to the right. It can be seen that beyond a certain AFR the jet starts to cut to a shallower depth.
Figure 6. Successive cuts made into a granite block at increasing AFR from the left to the right.
Interestingly the optimum feed rate doesn’t just depend on the pressure and water flow rate (waterjet orifice size) of the system. Faber and Oweinah have shown that as the feed particle size gets larger, so the optimum AFR reduces.
Figure 7. Optimal Abrasive feed rate as a function of particle size (after Faber, K., Oweinah, H., "Influence of Process Parameters on Blasting Performance with the Abrasive Jet," paper 25, 10th International Symposium on Jet Cutting Technology, Amsterdam, October, 1990, pp. 365 - 384.)
The process of finding an optimal feed rate for a system is thus controlled by the design of the mixing chamber based on the relative position of the abrasive feed tube and the size of the waterjet orifice. This controls how well the abrasive that is fed into the system can mix with the jet and acquire the velocity that it needs for most effective cutting. Then, as the above plot shows, the optimal AFR is also influenced by the size of the particles that are being fed into the system, since as the particles become larger beyond a certain size, so the cutting effectiveness declines.
Part of the reason for this is that, as the AFR increases so there is an increased risk of particle to particle impact breaking the particles down into smaller sizes. (And an earlier post showed that smaller particles cut less effectively – as does figure 7 above). We screened the particles that came from several different designs of AWJ nozzle assemblies capturing them after they left the nozzle but without further impact, so that the size range is indicative of that which a target material would see,
The table is a summary of some of the results and it shows results for a feed that began at 250 microns giving the percentage of the particles that survived at larger than 100 microns.
Figure 8. Percentage of the 250 micron sized feed that survives at above 100 micron for differing jet conditions. (the numbers are averaged from several tests).
It can be seen that when the feed rate rises to 1.5 lb a minute that there is a drop in abrasive size at higher jet pressures, and this is likely to be due to the increased interaction with particles. Since cutting effectiveness is controlled by particle size, count and velocity the only slightly greater amount of particles that survive above 100 microns at 1.5 lb/minute relative to those that survive at 1 lb/minute suggest that spending the money to increase the AFR above the optimal value (in this case around 1 lb/min) is a wasted investment.
It is therefore important to tune the system to ensure that, for each jet pressure and nozzle design that is used, that the AFR has been optimized.
But, before leaving the topic, I would like to discuss, in a little more detail, the concept of the optimal amount of abrasive that one should use with a given jet, and what happens as that feed rate is changed. As I mentioned last time, because of differences in the shapes of the mixing chambers of the nozzles supplied by different manufacturers, the specific sizes and optimal flow rates will differ from nozzle to nozzle but the overall conclusions remain the same.
Last time I pointed out that the driving waterjet had to break up within the mixing chamber in order to properly mix with the abrasive and to bring this up to a maximum speed before the mix left the focusing tube. Where the driving jet is too large then this breakup is not complete and the mixing is not efficient. As a result the jet that comes out of the end is more diffuse and the abrasive will not have reached the full velocity possible. However, if the incoming waterjet is made smaller for the same AFR and other mixing chamber geometries, then the cutting performance will decline.
Figure 1. Effect of increase in jet pressure when cutting aluminum with an AFR of 1.7 lb/minute (after Hashish, M., "Abrasive Jets," Section 4, in Fluid Jet Technology- Fundamentals and Applications, Waterjet Technology Association, St. Louis, MO, 1991.)
For a similar reason adding a polymer to the jet fluid should only be carried out with some care for the consequences. Long-chain polymers can give a jet increased cohesion and this can, at high enough concentrations, inhibit jet breakup in the mixing chamber thus reducing the effectiveness of mixing in the chamber.
Figure 2. The effect of changing cutting fluid on AWJ performance (after Dr Hashish ibid)
Polyox, (polyethylene oxide) is an extremely effective polymer for increasing jet performance by cohering the jet and reducing the friction losses between the pump and the nozzle. However, as the graph shows, adding it to some abrasive systems will reduce performance since the more coherent jet makes it more difficult for the abrasive to mix and accelerate to full velocity. At lower concentrations the polymer allows the jet to breakup, but keeps the slugs of water together making energy transfer more efficient. Higher velocity abrasive means that less is required to achieve the same cutting performance as Walters and Saunders showed.
Figure 3. Effect of adding polymer in reducing the amount of abrasive required to cut stainless steel (after Walters, C.L., Saunders, D.H., "DIAJET Cutting for Nuclear Decommissioning," Paper J2, 10th International Symposium on Jet Cutting Technology, Amsterdam, Netherlands, October, 1990, pp. 427 - 440.)
At low levels of abrasive feed Dr Hashish has shown that increasing the amount of abrasive in the feed increases cutting performance.
Figure 4. Effect of increase in AFR on depth of cut in mild steel at a feed rate of 6 inches/min (After Dr. Hashish ibid), waterjet diameter 0.01 inches.
However, as the abrasive flow rate continues to increase the cutting performance reaches a plateau and can decline, as Dr. Hashish illustrated. An AFR of 20 gm/sec is equivalent to a feed of 2.6 lb/minute.
Figure 5. The effect of higher AFR on cutting depth at 3 jet pressures on a mild steel target (after Dr. Hashish ibid)
Note that in this case the nozzle geometry was not optimized for operation at the highest jet pressure. More visibly we ran a series of cuts across a granite sample, where the only thing that changed between cuts was that we increased the abrasive feed rate in cuts from the left to the right. It can be seen that beyond a certain AFR the jet starts to cut to a shallower depth.
Figure 6. Successive cuts made into a granite block at increasing AFR from the left to the right.
Interestingly the optimum feed rate doesn’t just depend on the pressure and water flow rate (waterjet orifice size) of the system. Faber and Oweinah have shown that as the feed particle size gets larger, so the optimum AFR reduces.
Figure 7. Optimal Abrasive feed rate as a function of particle size (after Faber, K., Oweinah, H., "Influence of Process Parameters on Blasting Performance with the Abrasive Jet," paper 25, 10th International Symposium on Jet Cutting Technology, Amsterdam, October, 1990, pp. 365 - 384.)
The process of finding an optimal feed rate for a system is thus controlled by the design of the mixing chamber based on the relative position of the abrasive feed tube and the size of the waterjet orifice. This controls how well the abrasive that is fed into the system can mix with the jet and acquire the velocity that it needs for most effective cutting. Then, as the above plot shows, the optimal AFR is also influenced by the size of the particles that are being fed into the system, since as the particles become larger beyond a certain size, so the cutting effectiveness declines.
Part of the reason for this is that, as the AFR increases so there is an increased risk of particle to particle impact breaking the particles down into smaller sizes. (And an earlier post showed that smaller particles cut less effectively – as does figure 7 above). We screened the particles that came from several different designs of AWJ nozzle assemblies capturing them after they left the nozzle but without further impact, so that the size range is indicative of that which a target material would see,
The table is a summary of some of the results and it shows results for a feed that began at 250 microns giving the percentage of the particles that survived at larger than 100 microns.
Figure 8. Percentage of the 250 micron sized feed that survives at above 100 micron for differing jet conditions. (the numbers are averaged from several tests).
It can be seen that when the feed rate rises to 1.5 lb a minute that there is a drop in abrasive size at higher jet pressures, and this is likely to be due to the increased interaction with particles. Since cutting effectiveness is controlled by particle size, count and velocity the only slightly greater amount of particles that survive above 100 microns at 1.5 lb/minute relative to those that survive at 1 lb/minute suggest that spending the money to increase the AFR above the optimal value (in this case around 1 lb/min) is a wasted investment.
It is therefore important to tune the system to ensure that, for each jet pressure and nozzle design that is used, that the AFR has been optimized.
Subscribe to:
Post Comments (Atom)
dich vu lam bao cao tai chinh tai my dinh
ReplyDeletedich vu lam bao cao tai chinh tai hai ba trung
dich vu lam bao cao tai chinh tai ba dinh
dich vu lam bao cao tai chinh tai thanh tri
dich vu lam bao cao tai chinh tai hoang mai
dich vu lam bao cao tai chinh tai tay ho
dich vu lam bao cao tai chinh tai dong da
==========
dich vu ke toan thue tai dong da
dich vu ke toan thue tai tay ho
dich vu ke toan thue tai bac ninh
dich vu ke toan thue tai hai ba trung
dich vu ke toan thue tai tu liem
dich vu ke toan thue tai hoang mai
dich vu ke toan thue tai ba dinh
dich vu ke toan thue tai thanh tri
dich vu ke toan thue tai thai binh
cong ty lam dich vu ke toan tai vinh phuc
cong ty dich lam vu ke toan tai hung yen
cong ty dich lam vu ke toan tai phu tho
cong ty lam dich vu ke toan tai hai duong
cong ty lam dich vu ke toan tai hai phong
cong ty lam dich vu ke toan tai bac ninh
dich vu ke toan tai vinh phuc
dich vu ke toan tai hung yen
dich vu ke toan tai hai duong
dich vu ke toan tai tay ho
ReplyDeletedich vu ke toan tai ba đinh
dich vu ke toan tai hoang mai
dich vu ke toan tai thanh tri
dich vu ke toan tai dong da
dich vu ke toan tai tu liem
dich vu ke toan tai ha dong
dich vu ke toan tai long bien
dich vu ke toan tai thanh xuan
dich vu ke toan tai hai phong
dich vu ke toan tai bac ninh
dich vu ke toan tai hai ba trung
dich vu ke toan tai dong anh
dich vu ke toan tai gia lam
dich vu ke toan tai ung hoa
dich vu ke toan tai quoc oai
dich vu ke toan tai son tay
dich vu ke toan tai thanh oai
hoc ke toan tong hop
dich vu ke toan thue tron goi
dich vu bao cao tai chinh
dia chi hoc ke toan tong hop
khoa hoc ke toan tong hop
hoc chung chi ke toan
dich vu ke toan thue tai tphcm
lớp học kế toán tổng hợp
lớp học kế toán thực hành
dia chi hoc ke toan tai cau giay
ReplyDeletedia chi hoc ke toan tai ha dong
dia chi hoc ke toan tai bac ninh
trung tam dao tao ke toan tai ha dong
trung tam dao tao ke toan tai cầu giấy
trung tam dao tao ke toan tai thanh xuan
trung tam dao tao ke toan tai tphcm
khóa học kế toán tổng hợp tại hải phòng
khóa học kế toán tổng hợp tại tại bắc ninh
khóa học kế toán tổng hợp tại tphcm
khóa học kế toán tổng hợp tại hà nội
trung tam dao tao ke toan tai quan 3
trung tam dao tao ke toan tai binh duong
trung tam dao tao ke toan tai bac ninh
trung tam dao tao ke toan tai hai phong
dịch vụ dọn dẹp sổ sách kế toán
ReplyDeletedịch vụ dọn dẹp sổ sách kế toán tại thái bình
dịch vụ dọn dẹp sổ sách kế toán tại phú thọ
dịch vụ dọn dẹp sổ sách kế toán tại hưng yên
dịch vụ dọn dẹp sổ sách kế toán tại quận hải dương
dịch vụ dọn dẹp sổ sách kế toán tại hải phòng
dịch vụ dọn dẹp sổ sách kế toán tại quận thanh trì
dịch vụ dọn dẹp sổ sách kế toán tại quận hoàng mai
dịch vụ dọn dẹp sổ sách kế toán tại quận hai bà trưng
dịch vụ dọn dẹp sổ sách kế toán tại quận hoàn kiếm
dịch vụ dọn dẹp sổ sách kế toán tại quận từ liêm
dịch vụ dọn dẹp sổ sách kế toán tại quận ba đình
dịch vụ dọn dẹp sổ sách kế toán tại quận tây hồ
dịch vụ dọn dẹp sổ sách kế toán tại quận đống đa
dịch vụ dọn dẹp sổ sách kế toán tại bắc ninh
dịch vụ dọn dẹp sổ sách kế toán tại quận tphcm
dịch vụ dọn dẹp sổ sách kế toán tại quận cầu giấy
dịch vụ dọn dẹp sổ sách kế toán tại quận long biên
dịch vụ dọn dẹp sổ sách kế toán tại quận hà đông
dịch vụ dọn dẹp sổ sách kế toán tại quận thanh xuân
dịch vụ hoàn thuế gtgt
dịch vụ làm báo cáo tài chính tại huyện củ chi
ReplyDeletedịch vụ làm báo cáo tài chính tại quận bình tân
dịch vụ làm báo cáo tài chính tại quân phú nhuận
dịch vụ làm báo cáo tài chính tại quận gò vấp
dịch vụ làm báo cáo tài chính tại quận thủ đức
dịch vụ làm báo cáo tài chính tại quận bình thạnh
dịch vụ làm báo cáo tài chính tại quận tân phú
dịch vụ làm báo cáo tài chính tại quận 12
dịch vụ làm báo cáo tài chính tại quận 11
dịch vụ làm báo cáo tài chính tại quận 10
dịch vụ làm báo cáo tài chính tại quận 9
dịch vụ làm báo cáo tài chính tại quận 8
dịch vụ làm báo cáo tài chính tại quận 7
dịch vụ làm báo cáo tài chính tại quận 6
dịch vụ làm báo cáo tài chính tại quận 5
dịch vụ làm báo cáo tài chính tại quận 4
dịch vụ làm báo cáo tài chính tại quận 3
dịch vụ làm báo cáo tài chính tại quận 2
dịch vụ làm báo cáo tài chính tại quận 1
dịch vụ báo cáo thuế tại tỉnh bình dương
ReplyDeletedịch vụ báo cáo thuế tại quận bình thạnh
dịch vụ báo cáo thuế tại quận tân phú
dịch vụ báo cáo thuế tại quận 5
dịch vụ báo cáo thuế tại quận 3
dịch vụ báo cáo thuế tại tphcm
dịch vụ báo cáo thuế tại quận long biên
dịch vụ báo cáo thuế tại quận hà đông
dịch vụ báo cáo thuế tại quận thanh xuân
dịch vụ báo cáo thuế tại quận cầu giấy
dịch vụ báo cáo thuế tại gia lâm
dịch vụ báo cáo thuế tại đông anh
dịch vụ báo cáo thuế tại thanh trì
dịch vụ báo cáo thuế tại quận hoàng mai
dịch vụ báo cáo thuế tại quận hai bà trưng
dịch vụ báo cáo thuế tại quận từ liêm
dịch vụ báo cáo thuế tại quận hoàn kiếm
dịch vụ báo cáo thuế tại quận tây hồ
dịch vụ báo cáo thuế tại quận ba đình
dịch vụ báo cáo thuế tại quận đống đa
Dịch vụ kế toán ACB chuyên cung cấp dich vu ke toan trọn gói uy tín chuyên nghiêp giá rẻ nhất tại HCM và các tỉnh lân cận với chi phí bỏ ra chỉ từ 500.000-1.500.000đ.
ReplyDeleteTri ân khách hàng, ACB giảm giá lên đến 50% giá trị hợp đồng khi doanh nghiệp trở thành đối tác của chúng tôi.
Liên hệ: Dịch vụ kế toán , Dich vu ke toan .
Lầu 4, Tòa nhà Long Mã, 602 Cộng Hòa,P.13,Q.Tân Bình,HCM.
Hotline: (08) 62 97 97 97 - 0966 660 888.
Quantum Binary Signals
ReplyDeleteGet professional trading signals sent to your cell phone every day.
Start following our signals today & gain up to 270% a day.
شركة نقل عفش بالطائف
ReplyDeleteشركة نقل عفش بينبع
شركة نقل عفش بالدمام
شركة نقل عفش بنجران
شركة نقل عفش بخميس مشيط
شركة نقل اثاث بابها
شركة نقل اثاث بحائل
شركة نقل اثاث ببريدة
شركة نقل عفش بشرورة
ReplyDeleteشركة نقل اثاث بعسفان
شركة نقل اثاث بتبوك
شركة نقل عفش بالخبر
شركة نقل عفش بالاحساء
شركة نقل عفش بالقطيف
شركة نقل عفش بالجبيل
شركة نقل عفش بالخرج
ReplyDeleteشركة نقل عفش ببريدة
شركة نقل عفش بخميس مشيط
شركة نقل عفش بالقصيم
شركة نقل عفش بتبوك
شركة نقل عفش بابها
شركة نقل عفش بنجران